New Update Launched Contact Us Download Now!

What is Blockchain?

Please wait 0 seconds...
Scroll Down and click on Go to Link for destination
Congrats! Link is Generated

 If you have been following banking, investing, or cryptocurrency over the last ten years, you may have heard the term “blockchain,” the record-keeping technology behind the Bitcoin network.


KEY TAKEAWAYS

  • Blockchain is a specific type of database.
  • It differs from a typical database in the way it stores information; blockchains store data in blocks that are then chained together. 
  • As new data comes in it is entered into a fresh block. Once the block is filled with data it is chained onto the previous block, which makes the data chained together in chronological order.
  • Different types of information can be stored on a blockchain but the most common use so far has been as a ledger for transactions. 
  • In Bitcoin’s case, blockchain is used in a decentralized way so that no single person or group has control—rather, all users collectively retain control.
Decentralized blockchains are immutable, which means that the data entered is irreversible. For Bitcoin, this means that transactions are permanently recorded and viewable to anyone.


What is Blockchain?


Blockchain seems complicated, and it definitely can be, but its core concept is really quite simple. A blockchain is a type of database. To be able to understand blockchain, it helps to first understand what a database actually is. 

A database is a collection of information that is stored electronically on a computer system. Information, or data, in databases is typically structured in table format to allow for easier searching and filtering for specific information. What is the difference between someone using a spreadsheet to store information rather than a database?

Large databases achieve this by housing data on servers that are made of powerful computers. These servers can sometimes be built using hundreds or thousands of computers in order to have the computational power and storage capacity necessary for many users to access the database simultaneously. While a spreadsheet or database may be accessible to any number of people, it is often owned by a business and managed by an appointed individual that has complete control over how it works and the data within it.

So how does a blockchain differ from a database?


Storage Structure

One key difference between a typical database and a blockchain is the way the data is structured. A blockchain collects information together in groups, also known as blocks, that hold sets of information. Blocks have certain storage capacities and, when filled, are chained onto the previously filled block, forming a chain of data known as the “blockchain.” All new information that follows that freshly added block is compiled into a newly formed block that will then also be added to the chain once filled.

A database structures its data into tables whereas a blockchain, like its name implies, structures its data into chunks (blocks) that are chained together. This makes it so that all blockchains are databases but not all databases are blockchains. This system also inherently makes an irreversible timeline of data when implemented in a decentralized nature. When a block is filled it is set in stone and becomes a part of this timeline. Each block in the chain is given an exact timestamp when it is added to the chain.

Transaction Process

Blockchain

Attributes of Cryptocurrency

Blockchain

Decentralization

For the purpose of understanding blockchain, it is instructive to view it in the context of how it has been implemented by Bitcoin. Like a database, Bitcoin needs a collection of computers to store its blockchain. For Bitcoin, this blockchain is just a specific type of database that stores every Bitcoin transaction ever made. In Bitcoin’s case, and unlike most databases, these computers are not all under one roof, and each computer or group of computers is operated by a unique individual or group of individuals.  

Imagine that a company owns a server comprised of 10,000 computers with a database holding all of its client's account information. This company has a warehouse containing all of these computers under one roof and has full control of each of these computers and all the information contained within them. Similarly, Bitcoin consists of thousands of computers, but each computer or group of computers that hold its blockchain is in a different geographic location and they are all operated by separate individuals or groups of people. These computers that makeup Bitcoin’s network are called nodes. 

In this model, Bitcoin’s blockchain is used in a decentralized way. However, private, centralized blockchains, where the computers that make up its network are owned and operated by a single entity, do exist. 

In a blockchain, each node has a full record of the data that has been stored on the blockchain since its inception. For Bitcoin, the data is the entire history of all Bitcoin transactions. If one node has an error in its data it can use the thousands of other nodes as a reference point to correct itself. This way, no one node within the network can alter information held within it. Because of this, the history of transactions in each block that make up Bitcoin’s blockchain is irreversible. 

If one user tampers with Bitcoin’s record of transactions, all other nodes would cross-reference each other and easily pinpoint the node with the incorrect information. This system helps to establish an exact and transparent order of events. For Bitcoin, this information is a list of transactions, but it also is possible for a blockchain to hold a variety of information like legal contracts, state identifications, or a company’s product inventory. 

In order to change how that system works, or the information stored within it, a majority of the decentralized network’s computing power would need to agree on said changes. This ensures that whatever changes do occur are in the best interests of the majority.

Transparency

Because of the decentralized nature of Bitcoin’s blockchain, all transactions can be transparently viewed by either having a personal node or by using blockchain explorers that allow anyone to see transactions occurring live. Each node has its own copy of the chain that gets updated as fresh blocks are confirmed and added. This means that if you wanted to, you could track Bitcoin wherever it goes. 

For example, exchanges have been hacked in the past where those who held Bitcoin on the exchange lost everything. While the hacker may be entirely anonymous, the Bitcoins that they extracted are easily traceable. If the Bitcoins that were stolen in some of these hacks were to be moved or spent somewhere, it would be known.

Spreadsheets are designed for one person, or a small group of people, to store and access limited amounts of information. In contrast, a database is designed to house significantly larger amounts of information that can be accessed, filtered, and manipulated quickly and easily by any number of users at once.


Post a Comment

Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.